

ANTIBACTERIAL PROPERTIES OF SILVER NANOPARTICLES SYNTHESIZED USING PIPER LETLE L. LEAF EXTRACT

Vu Tien Hieu^{1,2,a}, Bui Van Huan^{1,b*} and Nguyen Ngoc Thang^{1,c*}

¹Hanoi University of Science and Technology, Hanoi, Vietnam

²Ho Chi Minh City Industry and Trade College, Ho Chi Minh, Vietnam

^avutienhieu@hitu.edu.vn, ^bhuan.buivan@hust.edu.vn, ^cthang.nguyenngoc@huts.edu.vn

Introduction

- The multidrug-resistant bacteria is recognized to be one of the most important current public health problems.
- Silver nanoparticles (AgNPs) are effective antimicrobial agents to control broad-spectrum pathogenic microorganisms including multidrug-resistant bacteria.
- The traditional chemical synthesis method commonly employs non-biodegradable toxic chemicals as reducing agents, restricting the biomedical applications of prepared nanoparticles.
- The bio-constituents present in the plant extracts could be utilized as both reducing and capping agents for green synthesis of AgNPs.
- Piper betle L. (PBL) has been used as a traditional Vietnam medicinal plant for masticatory, containg phenolic compounds, amino acids, proteins, several terpenes and terpenoids, which possess strong reducing power.

Objective

- Investigate a green approach for preparation of AgNPs by the reduction of Ag* ions to Ag° with bio-reductants in the PBL leaf extract.
- Identify the antibacterial activity of the biosynthesized AgNPs on two gram-negative bacteria (*Escherichia coli (E. Coli*) and *Pseudomonas aeruginosa (P. aeruginosa)*) and one gram-positive bacteria (*Staphylococcus aureus* (*S. aureus*)).

Experiment

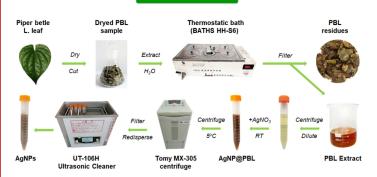


Fig. 1. Schematic illustration of the aqueous extraction process of PBL and the synthesis of AgNPs using the PBL extract.

Results

1. UV-Vis Spectroscopy

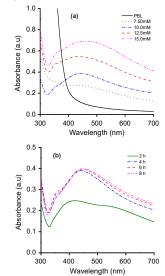


Fig. 2. UV/Vis spectra of AgNPs using PBL extract as a function of (a) Ag⁺ concentration, (b) Reaction time.

2. Morphological and Structural Studies

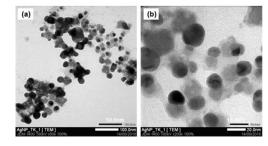


Fig. 3. TEM micrographs of AgNPs synthesized at the chosen condition (10 mL diluted PBL extract, 1mL AgNO₃ 10 mM and 4 h reaction time) with different magnification: (a) × 50k and (b) ×200k

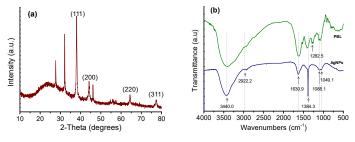


Fig. 4. (a) XRD pattern of AgNPs and (b) FTIR spectra of PBL and AgNPs.

3. Antimicrobial Activities

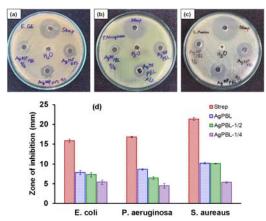


Fig. 5. The photographs showing zone of inhibition of the AgNPs against (a) E. coli, (b) P. aeruginosa and (c) S. aureus: negative control (H₂O); positive control (Streptomycin 30 μg/mL); AgPBL (AgNPs 100 μg/mL); AgPBL-1/2 (AgNPs 50 μg/mL) and AgPBL-1/4 (AgNPs 25 μg/mL); (d) Quantitative evaluation of antibacterial activity of the AgNPs against the pathogenic bacteria ((±SD, n = 3).

Conclusions

- Silver nanoparticles with an average size of 10-20 nm were synthesized *using Piper betle L. leaf extract.*
- AgNPs were characterized using UV-Vis, TEM, XRD and FTIR techniques.
- AgNPs exhibited potential antibacterial activities against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus bacteria.

Acknowledgments

The authors would like to thank Hanoi University of Science and Technology for financially supporting this research under Grant No. T2018-PC-049. We thank Department of Textile Material and Chemical Processing for providing excellent research facilities.